Linear Algebra and SVD

(Some slides adapted from Octavia Camps)

Goals

- Represent points as column vectors.
- Represent motion as matrices.
- Move geometric objects with matrix multiplication.
- Introduce SVD

Euclidean transformations

2D Translation

2D Translation Equation

$$
\begin{aligned}
& \text { ty } \\
& \mathbf{P}^{\prime}=\left(x+t_{x}, y+t_{y}\right)=\mathbf{P}+\mathbf{t}
\end{aligned}
$$

2D Translation using Matrices

Scaling

 5
Scaling Equation

$$
\begin{aligned}
& \mathbf{P}=(x, y) \\
& \mathbf{P}^{\prime}=(s x, s y) \\
& \mathbf{P}^{\prime}=s \cdot \mathbf{P} \\
& \mathbf{P}^{\prime} \rightarrow\left[\begin{array}{l}
s x \\
s y
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]}_{\mathbf{S}} \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \mathbf{P}^{\prime}=\mathbf{S} \cdot \mathbf{P} \quad
\end{aligned}
$$

Rotation

Rotation Equations

Counter-clockwise rotation by an angle θ

Why does multiplying points by R rotate them?

- Think of the rows of R as a new coordinate system.

Taking inner products of each points with these expresses that point in that coordinate system.

- This means rows of R must be orthonormal vectors (orthogonal unit vectors).
- Think of what happens to the points $(1,0)$ and $(0,1)$. They go to (cos theta, -sin theta), and (sin theta, cos theta).
They remain orthonormal, and rotate clockwise by theta.
- Any other point, (a,b) can be thought of as a(1,0) + $\mathrm{b}(0,1) . \mathrm{R}(\mathrm{a}(1,0)+\mathrm{b}(0,1)=\mathrm{Ra}(1,0)+\mathrm{Ra}(0,1)=\mathrm{aR}(1,0)$ $+b R(0,1)$. So it's in the same position relative to the rotated coordinates that it was in before rotation relative to the x, y coordinates. That is, it's rotated.

Degrees of Freedom

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& \mathbf{R} \text { is } 2 \times 2
\end{aligned}
$$

BUT! There is only 1 degree of freedom: θ
The 4 elements must satisfy the following constraints:

$$
\begin{aligned}
& \mathbf{R} \cdot \mathbf{R}^{\mathbf{T}}=\mathbf{R}^{\mathbf{T}} \cdot \mathbf{R}=\mathbf{I} \\
& \operatorname{det}(\mathbf{R})=1
\end{aligned}
$$

Transformations can be composed

- Matrix multiplication is associative.
- Combine series of transformations into one matrix. (example, whiteboard).
- In general, the order matters. (example, whiteboard).
- 2D Rotations can be interchanged. Why?

Rotation and Translation $\left(\begin{array}{ccc}\cos q & -\sin q & t x \\ \sin q & \cos q & t y\end{array}\right)\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$ $0 \quad 0 \quad 1$

Rotation, Scaling and Translation

$$
\left(\begin{array}{ccc}
a & -b & t x \\
b & a & t y
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)
$$

Rotation about an arbitrary point

- Can translate to origin, rotate, translate back. (example, whiteboard).
- This is also rotation with one translation.
- Intuitively, amount of rotation is same either way.
- But a translation is added.

Stretching Equation

$$
\begin{aligned}
& \mathbf{P}^{\prime}=\mathbf{S} \cdot \mathbf{P}
\end{aligned}
$$

Stretching = tilting and projecting (with weak perspective)

$$
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{l}
s_{x} x \\
s_{y} y
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=s_{y}\left[\begin{array}{cc}
\frac{s_{x}}{s_{y}} & 0 \\
s_{y} & \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

SVD

- For any matrix, $M=R_{1} D R_{2}$
- R_{1}, R_{2} are rotation matrices
- D is a diagonal matrix.
- This decomposition is unique.
- Efficient algorithms can compute this (in matlab, svd).

Linear Transformation

$$
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \text { SVD }
$$

$$
=\left[\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right]\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{cc}
\sin \varphi & \cos \varphi \\
-\cos \varphi & \sin \varphi
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$=s_{y}\left[\begin{array}{cc}\sin \theta & \cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]\left[\begin{array}{cc}S_{x} & 0 \\ s_{y} & \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{cc}\sin \varphi & \cos \varphi \\ -\cos \varphi & \sin \varphi\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Affine Transformation

$$
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{lll}
a & b & t x \\
c & d & t y
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Simple 3D Rotation

$\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{llllll}x_{1} & x_{2} & \cdot & \cdot & x_{n} \\ y_{1} & y_{2} & & & & y_{n} \\ z_{1} & z_{2} & & & & z_{n}\end{array}\right)$

Rotation about z axis.
Rotates x, y coordinates. Leaves z coordinates fixed.

Full 3D Rotation

$R=\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right)$

- Any rotation can be expressed as combination of three rotations about three axes.

$$
R R^{r}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Rows (and columns) of R are orthonormal vectors.
- R has determinant 1 (not -1).
- Intuitively, it makes sense that 3D rotations can be expressed as 3 separate rotations about fixed axes. Rotations have 3 degrees of freedom; two describe an axis of rotation, and one the amount.
- Rotations preserve the length of a vector, and the angle between two vectors. Therefore, $(1,0,0),(0,1,0)$, $(0,0,1)$ must be orthonormal after rotation. After rotation, they are the three columns of R. So these columns must be orthonormal vectors for R to be a rotation. Similarly, if they are orthonormal vectors (with determinant 1) R will have the effect of rotating $(1,0,0)$, $(0,1,0),(0,0,1)$. Same reasoning as 2D tells us all other points rotate too.
- Note if R has determinant -1 , then R is a rotation plus a reflection.

3D Rotation + Translation

- Just like 2D case

